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Abstract-For structural systems with a coincident lowest eigenvalue Ao the influence of
imperfections on the buckling of the systems depends to a very large extent upon the distribu­
tion of the imperfections. Moreover, the system may buckle either at a limit point or at a
bifurcation point before this limit point is reached. Considering both possibilities, a lower bound
to the buckling load of the system, for a given root mean square of the imperfections, is ob­
tained. Furthermore, with reference to a set of particular, normalized co-ordinates, it was found
that the absolute minimum buckling load is given by an imperfection vector parallel to the
steepest of all post-buckling paths intersecting at Ac • At this absolute minimum buckling load
the critical point is a limit point. As an example, the lower bound to the buckling load of an
imperfect cylindrical shell under axial compression was calculated.

I. INTRODUCTION

In structural mechanics, it is common practice to approximate the behaviour of a con­
tinuum by some discretization processes. The potential energy of a conservative structural
system is then a function of the loading parameter Aand a finite set ofgeneralized co-ordinates
qi • In most cases, the potential energy of the structure includes only linear terms in Aand in
subsequent discussions, attention will be concentrated on such systems.

In linear analysis, the equilibrium path of a structure is governed by a set of linear
simultaneous algebraic equations, the lowest eigenvalue of which gives the lowest buckling
load of the structure. If this lowest eigenvalue Ac of the linear system is distinct, the orienta­
tion of the corresponding eigenvector is uniquely defined. This eigenvector will in turn
define uniquely the buckling mode of the structure. If nonlinear effects are to be included,
the buckling load of the structure will obviously be different. For most structures, the
most significant nonlinear terms may be represented by a so-called "imperfection vector".
The change in buckling load, as is well known, [1] is directly related to the magnitude and
orientation of this imperfection vector and also to the slope (or curvature) at Ac of the
uniquely defined post-buckling path. If the postbuckling path is steep, reduction in buckling
load will be large. Maximum reduction is obtained when the imperfection vector is parallel
to the eigenvector corresponding to the lowest eigenvalue Ac. The critical point of the non­
linear system referred to in the above discussion is a limit point, that is, a local maximum
point on the nonlinear basic equilibrium path of the structure.

For the particular case where Ac is not distinct but is, for instance, an m-fold eigenvalue,
the eigenvectors will not be uniquely defined and there exist more than one post-buckling
path in the neighbourhood of Ac[l, 4, 5]. If reduction in buckling load were again influenced
by the slope (or curvature) of the post-buckling path, one would then expect that the equilib­
rium path of the nonlinear system closest to the post-buckling path with the steepest slope
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(or maximum curvature) will have the least buckling load. The imperfection vector which
produces such a basic equilibrium path will hence be the" worst" imperfection vector. With
reference to a particular set of normalized coordinates Ui and defining the" worst" imper­
fection vector as one which produces the" absolute minimum buckling load" for a given
magnitude of the normalized imperfection parameter G, this has in fact been proved to be
true for two typical categories of structural systems. Moreover, in the proof given, the
possibility of bifurcation buckling was also considered. With the "absolute minimum
buckling load" thus established, it was then possible to obtain a lower bound to the buckling
load of the system for a given root mean square of the imperfections.

Finally, to demonstrate quantitatively the above ideas, the typical example of a thin im­
perfect circular cylinder under axial compression was studied. It is well known that a
perfect, long cylinder may buckle into many different wave forms at the same buckling
load Ae • In other words the eigenvalue of the linear system is a multiple eigenvalue. The
worst imperfection vector and the corresponding lower bound to the buckling load was
found. As was expected, the buckling load given by Koiter[2] who assumes arbitrarily that
the imperfection is axisymmetrical is greater than the estimated lower bound.

2. LIMIT POINTS AND BIFURCAnON POINTS

Consider a structural system of m degrees of freedom with a potential energy given as
follows:t

(I a)

where i = I to m, qi are the generalized co-ordinates and Aand K are the loading and imper­
fection parameters respectively. The vector di represents the imperfection of the structure
and the root mean square Q of the imperfection can be given in terms of di as follows:

Q = M{a\i)didJ1 /2

where ali) are known constants. Note that the summation convention applies to all Latin
subscripts not in brackets.

For a given value of the root mean square of the imperfections, the vector di is normalized
by the following condition:

a\i)di di = 1.

For the particular case where the eigenvalues A(i) are coincident such that A(i) = Ae for all
i, the quadratic forms Bij and Cij will be diagonalized for any set of co-ordinates qi' Equa­
tion (Ia) then takes the following form:

V(qi' A, K) = (Ae - },)B2(i)qiqi + Bijkqiqjqk + AKD(iJqidi' (Ib)

In equation (I b), we shall assume that A takes positive values only.
Rewriting the above in terms of a set of normalized co-ordinates Ui' we have

V(Ui' A, s) = A 2 {(Ae - A)UiUi + A ijk UiUjUk + hSiuJ (IC)

t For the more general case of a system with n degrees of freedom having a m-fold lowest eigenvalue
(m < n), as a first approximation it is necessary to consider only the effect ofthe first m" critical" co-ordinates,
see Koiter[ll.
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Ui = B(i)q;/A

A ijk = ABijk/(B(i) B(j) B(k»)

{3S. = D(i) d. and SiSi = 1
I AB(i) I

e = K{3.

The constant A is chosen such that {3 ~ 1.
Considering equation (Ic) we see that an orthogonal transformation U i = Ct.iju j with

Ct. i1 = Si exists such that Si = SjCt. ji = l5 i1 where l5ij is the Kronecker de1ta[6],
I.e.

(2)

where

in particular

The behaviour of the structure depends obviously upon the relative magnitude of the
coefficients Aijk and in particular upon the magnitude of All1 . The orientation of the
imperfection vector S i therefore bears a direct influence upon the behaviour of the structure.
Our purpose is to seek the optimum orientation of S i which will produce the maximum

All1 ·

To find a lower bound to the buckling load, it is necessary to consider the possibility of
both snap through at a limit point and bifurcation buckling. Conditions which govern
these two different types of buckling behaviour are well known[7]. However, for the clarity
of subsequent discussion it is perhaps worthwhile to present a brief derivation of these
conditions.

Consider for example a structure with a potential energy given by equation (Ic). The
equilibrium of the structure then requires,

(3)

For critical stability,

(4)

where partial differentiation with respect to U;, Uj etc. is represented by, ij' etc.
Let us now perturb the governing equilibrium equations with respect to a suitably chosen

independent parameter z, starting from a point p.0
, u?) on the equilibrium path. Differentia­

ting equation (3) once with respect to z, we have,

(5)

where

Brs = 2(A.c - Ao)l5rs + 6Arst u~

Cr = 2u~ - eSr (r, S, t = I to m).

Differentiation with respect to Z is represented by an apostrophe.
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At AD = X, the buckling load of the structure, det IBrs I = O. Hence for all Cr ¥= 0, a non­
trivial solution u; exists if and only if A' = 0, that is, the system buckles only at a local
maximum point on the basic equilibrium path. Consider however the case when some but
not all of the coefficients C r vanish. For example when Sp =0 and A pij = 0 for all p > hand
i,j:(; h it follows that u? ¥= 0, u~ = 0 is a solution of equations (3). Equation (5) can then be
separated into two sets of decoupled equations,

and

Dijuj = A'Ci

Epqu~ = A'Cp (i,j:(; h; p, q > h)

At a critical point, det IBrs I = det IDij I. det IEpq I = 0; several possibilities therefore exist
and are described below:

(i) detl Dii 1 = 0, det 1Epq I ¥= 0, for a non-trivial solution uj to exist X must vanish. The
critical point is therefore a limit point.

(ii) det I Dij 1 ¥= 0, det 1Epq I =0, hence at least two equilibrium paths exist, that is, u~ =0
and u~ ¥= O. The intersection of these two paths is then a bifurcation point.

(iii) detl Dul = 0, det IE pq I = O. For a non-trivial solution uj to exist A' must vanish.
However, since detJ Epq I = 0, it is again possible for two equilibrium paths u~ = 0 and
u? ¥= 0 to exist. The intersection of these two paths is now a limit point.

Besides the cases listed above, bifurcation may also occur if the determinant ID ij I and the
set of coefficients C i vanish simultaneously at a particular loading AD, that is, when the
solution vector u? becomes parallel to the imperfection vector Si' However, for the parti­
cular case where Si = 0 except for i = 1, AD is negative and the solution is therefore of no
immediate interest to us.

Summing up, for S, = <>,1' the necessary conditions for the existence of bifurcation points
are:

(1) Apij=O U,j:(;h,p>h)

(2) detJEpql = O.

3. SOME INEQUALITIES

(6)

Consider the optimization of the function A~p,,~ = Aiik"n ti~ tiP tky •. tn~ where ti~' tiP' etc.
are arbitrarily orientated m-dimensional unit vectors. Note that summation convention does
not apply to the Greek suffices. Let ti~' t/p , etc. be vectors which optimize A~p,,~, then they
must satisfy the following equations:

and

Aijk.-otl tj~tky"tn~ - 2cP2 tiP = 0,
etc.

(7a)

(7b)
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where 4J1' ¢2"" etc. are the Lagrange mUltipliers and 2¢1 = 2¢2 = ... = A Uk ..nI j « Ijp Iky
'" In~ = A«p ..~. Adding equations (7a) and (7b), we have,

(A ijk ..nIky ../n~ - 2¢2 (ji)t jP + (A ijk ..ntky ..tn~ - 2cP1t)i)t j« = O.

Again from equation (7a),

(A ijk ..ntky ..tn~ - 2¢1(jij)tj /J - 2¢1(ti« - tjp) = O.

Hence if det IA ijk ..ntkY"tn~ - 2¢1(jij I =1= 0, then tjP = - tia'
If on the other hand the determinant vanishes, then a non-trivial solution exists if and only if
¢l = 0 or t i« = tiP' Similarly, it can be shown that It~ I = IIi; I ='" = Iti~)' In other
words, at the non·zero optimums of A«p .. ~ the vectors Iti~ J, 1ti~ I, etc. must be identical.
Furthermore, let A:p.~ be the local optimums of A«p.-.; and IAill.ll the global or absolute
maximum of the function IA ijk ..• Si Sj Sk Sn I, .. where Si represents an arbitrarily orientated
unit initial imperfection vector, then IA«p .. {1 ~ IA«p..~1 ~ IAill.ll forall] ~rx,p, .. ~~m.

To find At11.l' note that st which optimizes the function Aijk ..nSiSjSk"Sn with the
constraint SiSi = ] must satisfy the following m + ] equations:

NAijk ..nSjSk"Sn - 2¢Si = 0 (8a)

SiSi = 1 (8b)

where ¢ is the Lagrange multiplier. Multiplying equation (8a) with the transformation
vector IXir and sum over the index i, we obtain,

NA ijk ..nSj Sk"S. (Xir = 2¢Si IXir'

Since (Xii = Si and the transformation is orthogonal, that is, IXir (Xis = br ., we have,

s ~ I

that is AlI 1..1S vanishes when All 1..1 attains its local optimum.
Let us now compare equations (3) with (8a) where N is now equal to 3. For a linear

system, e = 0 in (3) and if Ui is a solution to (3) with e = 0, then it is obvious that Si = yUi is
a solution of (8a). To find 1', note that SiSi = 1 hence 1'2(UiU;) = 1 or y = (UjUi)-1/2. Hence
the optimum vectors st are parallel to the projections onto the normalized U i subspace of
the post buckling paths of the structure. Moreover, since the slope of the postbuckling path
is given by the magnitude of Alll , the imperfection vector 57 which yields the global
maximum Ai11 will be parallel to the post-buckling path with the greastest slope.

4. SNAP BUCKLING

To find a lower bound to the snap buckling load, consider the first of the equilibrium
equations (3),

2()·c - A)Ul + 3AljkUjUk + Ae51 = 0

where 51 ~ O. Expanding the above, we have, for s, r ~ 1

(3A lll )ui + (2(Ac -).,) + 6A llS us]Ul + (3A lsr Us Ur + ).,eS j ) = 0

hence
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(9)

At A = I the snap buckling, the equilibrium path reaches a local maximum point, that is,
the terms within the bracket in the above equation cancel each other. The two solutions of
the quadratic equation coincide and are given by,

_ (Ac - I) + 3Alls iis
U 1 =-

3A ll1

where ii j gives the equilibrium position of the structure at I. Equation (9) can be rewritten
as follows:

i = 1 to m

or

where ii = (ii j ii j)I/2 is the magnitude of the vector ii j and OJ = iij/ii is a unit vector. Moreover,
the sum Alljo j can be rewritten as follows:

where tjt = bj1 and tjB =aj' Hence it is obvious that IAlliai! must be less than or equal to
the global maximum IAi111·
that is

(10)

To find the magnitude U of the vector Uj, multiply the ith equilibrium equation by U j and
sum over the index i,

For U ::f:; 0, we have,

Au2 + Bu + C = 0

where

is bounded

B = 2(Ac - A) > 0

C = AeSjaj.

Let bI , b2 where Ibtl ~ Ib2 1 be the two real roots of (11 a), such that

(u - bt)(u b2 ) = 0

then

C
btb2 = A

B
b1 + b2 = --.

A

(lla)

(11 b)

(lIe)
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At a limit point, b1 = b2 , that is B2 - 4AC = O. Hence for a limit point to exist A and C
must be of the same sign. From equations (lIb) and (lIe) it follows therefore that both b1

and b2 are of opposite sign to A.

and

Ib1 IIb2 1 = I§I

Ib1 1 + Ib2 1=I~I'

or

(13)

(12)

From the above two equations we have,

Ib112 -lb1 11b2 1=1~jlbll-12~1~0

lb1 1 ~I~I
that is

\ I \
ASSiOij I AS jU ~ -- ~--.
lc - A Ac - A

The above inequality is valid for all 0 ~ A < Ac '

At A = ;,:, equations (12) and (10) then give

(Ac - A:)l ~ 13Ai11;':S!.

Substituting for S = K{3 ~ K (since {3 ~ I), we have,

(Ac -A)2 ~ 13Ai11 AK l·
Defining A* by (Ac - A*)2 13Ai111*K\, it is obvious that ;,: ~ A*. A* is therefore a lower
bound to the snap buckling load of the structure.

In terms ofthe normalised co-ordinates, equation (13) can be interpreted geometrically as
follows: if an imperfection vector S7 can be found such that after the orthogonal trans­
formation U i = atut where a11 = S7, the coefficient Ai11 = Auka:'i a~'t a:1 attains its
global maximum Ai11 and Sf = t5 i1 , then AiIs vanishes for all s #: 1. The sth equilibrium
equation therefore gives ii: = O. From equation (4), the corresponding snap buckling load is
then given by (Ac - A*)2 = 3Ai11;':*S. Comparing this result with equation (13), it is obvious
that A~ ..1:*. In other words for a given value of the imperfection parameter S the snap
buckling load ..1:* corresponding to an impervection vector S1 (where S1 is parallel to the
post-buckling path with the greatest slope Ai11) is the absolute minimum snap buckling load
of the structure.

5. BIFURCATION BUCKLING

From Section 2, we see that for Sp = 0 a bifurcating point exists if and only if the
coefficients Apij vanish for allp > hand i,j ~ h. Equations (3) then separate into two sets of
decoupled equations as follows:

2(lc - A)Ui + 3AijkUjUk + ASSi =0

up = 0 p > hand i, j, k ~ h.

(14a)

(14b)
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The critical point is now defined by,
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p,q>h. (15)

Note that the coefficients B pq = ApqiUi are invarian.! with respect to any transformation in
Uj' Let Ui be the solution of equation (l4a) at A = I, then a transformation in the up coor­
dinates can always be found such that ~pq = ApqiUi = (jpq. It is necessary to consider only
bifurcation points with buckling loads I less than Ac ' hence at least one of the coefficients
Bpq must be ne~ative. Let B88 = A 88i U i be the least of all negative Bpq , then the bifurcation
buckling load I is given as follows:

or

(16)

where again a j = udu is a unit vector.
Consider firstly the bifurcation point which is located on an equilibrium path with a local

maximum (point II, Fig. 1). Equation (12) is stili valid, that is, at A = I

Hence for IA88i ai I ~ IAi11 I, we obtain,

From the above inequality, it is obvious that ~ ~ ;:* and ~ ~ A*.
Besides the situation discussed above, bifurcation points may also exist on equilibrium

paths without maximums (e.g. point III, Fig. 1). The coefficients A and C in equation (lla)

-------'---------u
Fig. I.
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that is

are now of opposite sign. Let b i and b2 where Ib2 1 > Ib i I be the two roots of (Ila) then
from equation (lIe), it is obvious that for A < 0, bi < 0 and for A > 0, bi > O. Substituting
for bi , the quadratic equation can be written as follows,

Ib l 1
2
+ 1~llbil -I§/ = 0

1~llbil<I§1 forb i #O

Ibi l < I~I
hence

Substituting for ii, we have therefore

that is, ): is again greater than X* and A*. Hence, with reference to the normalized co­
ordinates, X* is the absolute minimum of all possible buckling loads produced by imperfec­
tion vectors with the same magnitude e but different orientations. Moreover, X* is the
buckling load corresponding to an imperfection vector parallel to the postbuckling path
with the steepest slope. Note however, that the normalized imperfection parameter e has no
direct physical meaning. For example, the root mean square of different imperfections with
the same e will in general be different, (see example in Section 7). Meanwhile, comparing
the effect of different imperfections with the same root mean square, A* given above is a
lower bound to all the possible buckling loads.

6. FOURTH ORDER SYSTEMS

In the previous sections, discussion was concentrated upon systems with potential energy
V given by equation (la). However, similar conclusions can easily be drawn for systems with
nonlinear terms of the fourth order.

If the more important terms only were considered, the potential energy of a fourth order
system can be written in the normalized co-ordinates as follows:

V(u i , A, e) = {(A c - A)UjUj + AjjklUjUkUjU/ + AeS juilA 2
• (17)

The equilibrium paths of the structure are then defined by the following equations,

2(Ac - A)U j + 4A jjk /Uj Uk U/ + AeS j = O. (l8)

Multiplying the ith equation with Uj and sum over the index i, we obtain,

2(Ac - A)U2 + (4Ajjk/ajajaka/)u4 + AeuSiaj = 0

where u2 = Uj U j . Since U # 0, the above equation then becomes,

Au3 + Bu + C = 0 (19)
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A = 4Aijk/aiajaka/

B = 2(A.c - A) > 0

C = AeSiai'

Let b1 , b2 , b3 be the three roots of equation (19) such that,

(u - b1)(u - b2)(u - b3) = 0

then

b1b2 b3 = -CIA

b1b2 + b1b3 + b2 b3 = B/A

b1 + b2 + b3 = O.

(20a)

(20b)

(2Oc)

(21)

If a local maximum point exists on the basic equilibrium path, two of the three roots must
be real and equal. Hence from equation (20c), 2b1 = -b3 • Substituting this result into
equations (20a) and (20b), we have, at the local maximum point A = 1,

bi = C/2A and bi = -B/3A

the existence of a local maximum then requires,

Substituting for A, Band C, we have therefore,

(Ac -.W = -(3/2)3(Ajjk,aiajaka,)(1eSiaj)2.

Since only the solution 1 < Ac is of interest, the right hand side can be assumed to take
positive values only. Moreover, from Section 3 IAijk,ajajakad :::; IAtll11, hence,

(Ac - 1)3 :::; (3/2)31 Ai-111 I(1e)2 :::; m31Atl111 (1K)2.

Let A.* be defined as follows:

(Ac - A*)3 = (3/2)31 At1111 (A*K)2. (22)

It is obvious that 1 will always be greater than A*.
For fourth order systems, the necessary conditions for the existence of bifurcation points

are the same as those given in equation (6), except that Apjjk instead of A pij must now vanish.
From condition (6), we have, therefore, for bifurcation buckling,

detl2(Ac - 2)bpq + Bpql = 0

where Bpq = 12ApqijuiUj with p, q > hand i, j:::; h. Again a tranformation up = PpqUq
among the up coordinates can always be found such that the above determinant is diag­
onalized. The lowest bifurcation load is then given by,

(23)

where A99ij = Apqij PpePq9' ui is a solution for A = '1 of the first set of the now decoupled
equilibrium equations (18) and aj = uJii is a unit vector. The magnitude ii of ii j is again
governed by a cubic equation of the same form as equation (19), except that indices i, j, k, I
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----........----u ----....L.------u

Fig. 2.

are now summed from 1 to h instead offrom 1 to m. For the present case the cubic equation
may have either (a) three real roots, or (b) one real root only.

Consider firstly case (a). Let I bil < I b2 1 < I b31 be the three real roots. Then from
equation (20e), bi and b2 must be of the same sign. Substituting equation (20e) into (20a) and
(20b) we have,

bib2 + bIb~ = CIA

bi + bIb2 + b~ = -B/A.

(24a)

(24b)

From the last equation, it is obvious that a real solution exists for A< Ac if and only if
A < 0. It therefore follows from equation (24a) that bl , b2 and C are of opposite sign.
Equation (24a) together with (24b) then gives,

2bi - bIb2(b l + b2 ) = -2Bbl /A - 3C/A.

Hence for C > 0, bi < 0,

for C < 0, bi > 0,

that is

-21~llbll +31~1 >0

21~llbll-31~1<0

or
Ibd < \3C/2B\

lui < 13AeSjai/4(Ac - A)I

lui < 13Ae/4(Ac - A)I·

The above inequality is true for all °< A< Ac • From equation (23) it is obvious that
(Ac - ~)3 < (3/2)31 Aillll (k)2 that is A* < 1

Consider next case (b). Let bi be the only real root then, the constant A is now positive.
Equation (19) then gives,
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From the above equation, it is clear that for all A < Ac , hi and C must be of opposite sign.
Hence, for C > 0, hi < 0,

for C < 0, hi > °

hence

that is

The bifurcation load is then bounded as follows:

(Ac - ~)3 < (3j2)IAtJlI 1(~e)2.

From the above result, it is again obvious that I must be greater than A*. In other words, l*
is a lower bound to all possible buckling loads for a given root mean square of the imperfec­
tions. Furthermore, an imperfection vector sf parallel to the post-buckling path with the
maximum curvature will produce a snap buckling X*, where (Ac - X*)3 = (3j2)3/At1J11.
(1*e)2. From the above discussion, it is obvious that for a given magnitude of imperfection
parameter e, X* is the absolute minimum buckling load of the system.

7. EXAMPLE

The foregoing analysis can now be applied to study the behaviour of an imperfect long
cylindrical shell under axial compression. For this purpose, the formulation of the problem
given by Koiter in-Refs. [1, 2] is accepted. Koiter assumes that the radial displacement w of
the shell is given by,

w = fR + Co sin Po i + ~ (akl sin Pkl i + Ck2 cos Pk2 i) cos k8 (25)t

where x and e are co-ordinates measured on the undeformed mid-surface of the shell
along the axial and circumferential directions respectively. The pre-buckling uniform radial
expansion of the cylinder is given by the fR where R is the radius of the shell. The buckling
mode meanwhile is described by the coefficients co, ak1 and Ck2 andpk1,pk2 which are the two
roots of the following equation:

where

t Summation convention does not apply to equations (25)-(28).
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Co
Ul =-

R

In the above equation, k is the number of circumferential waves and p the corresponding
axial wave number. The thickness of the cylinder is given by h and v is Poisson's ratio.
Substituting the expression for w into the equilibrium equations of the shell, the axial and
tangential displacements U and v of the cylinder can be determined.

The initial deformations of the cylinder can again be expressed in terms ofcos KO, sin Pkl i
x

and cos Pk2 - as follows:
R

Wo = (Jlh) [ Co sin Po ~ + ~ (Akl sin Pkl ~ + Ck2 cos Pk2 ~) cos kO] (26)t

where the coefficients Co, and Ak1 Ck2 are dimensionless and Jlh gives the magnitude of Wo .
Substituting for w, u, v and Wo in the potential energy function of the cylinder[l] we have,

Eh 2
V(Co , akl , ck2 , A, Jlh) = 2v2 (f - 2/Av)(2nRL)

nEhL 2 2 " 2 2 2 2 co" 2+~ HAc - A)[2po Co + T (Pklakl + Pk2 Ck2 )] + 3 R Tk akl Ck2

-2A(jlh)[2P6coCo + L (pfl aklAkl +pf2 Ck2 Cd]) (27)t
k

where A= ~ is the loading parameter, (1 the applied compression stress, E Young's modulus,

L length of the cylinder and Ac = (~) IJ3( I - v2
) the buckling load of the 'Perfect cylinder.

Writing, e = (2Jl~) . P= KP k2 = PklPk2

l<k~n+lt

we have,

(28)t

Eh
V(A, e,f, u i) = 2v2(f2 - 2/Av)(2nRL)

nhREL 2+ --2- Po [(Ac - A)UjUj + 3U1UkU(k+n) - AeSjUj] (29)

where 1 < k ~ n + 1, 1 ~ i ~ 2n + 1.

t To satisfy the assumption that boundary conditions at both ends of the cylinder can be ignored, k must
not be too small.
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(30a)

(30b)

(30c)

The equilibrium paths of the cylinder are defined by the equation! = Ilv together with the
following equations:

2(Ac - A)UI + 3UkU(k+n) - AeS1 = 0

2(Ac - A)Uk + 3u1u(k+n) - AeSk = 0

2(A·c - A)U(k+n) + 3UIUk - AeS(k+n) = 0

where 1 < k ~ n + 1, e = 1<:13.
For e = 0, the solutions of the above equations are,

(i) U1 = Uk = u(k+n) = 0 which represents the trivial basic equilibrium path.
(ii) Uk = ± u(k+n) for all k and u 1 = =tiOc A), in particular, Uk' U(k+n) may vanish for some
or all except one value of k.
From equation (30a),

hence

The optimum imperfection vectors S7 is given by,

st = YU;

where

or
1

y=--
~

and

but

A'St = 3 for r = L 2 ~ s ~ n + 1, and t = S + n.

= 0 for all other values of r, s, t

hence

- 3 ) 3 3' /J­Alli = Y (3us u(s+n)UI = Y (3u I ) = 1 3.

Since all possible combinations of the antisymmetrical solutions Uk' U(k+n) #- 0 give the

same value of 1/J3 for AllI , the global maximum Alll is therefore equal to l/Ji A* is now
given by,

(31)

The root mean square of the initial deflection Wo of the cylinder is given as follows:

L 2"
Q2 = f f (Rw~ dx dO) . (2nLR)-1

o 0

= t(llh)2(C6 + tAkl Akl + tCk2 Cd·
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Note that Co = d1 , Akl = dk and Ck2 = d(k+n) for 1 < k ~ n + 1. Hence, for Q2 = !(llh)2,
the vector d; is normalized by the following condition:

C~ + -!AklAkl + -!Ck2 Ck2 = 1.

Since Pkl/PO and Pk2/PO are both less than one, comparing the above condition with equation
(28), it is obvious that p< 1. Hence, for an initial deflection of root mean square 1lh/j2,
equation (31) then gives a lower bound to all possible buckling loads.

For example if the initial deformation is axisymmetrical, i.e. Co #- 0 Akl = Ck2 = 0 for all
k, then for a root mean square of 1lh/)"2, Co = 1, P= 1. The buckling load given by
Koiter[l] is as follows:

;: is obviously greater than the lower bound 2*.
The relation between Q and e f('lr this particular case is given by

Again, assume an imperfection vector Sl = Sk = S(k+n) = 1/)3, with Pltl = Pk2 = tpo'
1 1

For Q = )2 (Ilh) we have Co = 1/3, Akl = Ck2 = 2J"2/3 and p = J3co = J3' The

buckling load of the cylinder is then given by

which is again greater than the lower bound given in equation (31). Finally for given e, the
root mean square of the imperfections is as follows:

J- J-1 3 1 3
Q =)2 (llh)(3Co>= 2(Ilh)P = 2 2Re.

Hence, it is obvious that the root mean square depends not only on e but also on the
orientation of the imperfection vector d; .

8. CONCLUSION

A lower bound to the buckling load of an imperfect structural system with an m-fold
eigenvalue was established. Referring to a set of particular, normalized co-ordinates U;, it
was found that if the imperfection vector is orientated along the direction of the post­
buckling path with the steepest slope or maximum curvature, the buckling load of the system
will attain its global minimum. This result can be considered as a generalization of Roorda's
[3] conclusion on major and minor imperfections for systems with distinct eigenvalues.
Rigorous proof was given for two typical categories of structural systems. In the analysis,
the only restriction imposed on the imperfection vector S; is the constraint Si S; = 1. In
other words, the imperfection vector was assumed to be physically feasible for all possible
variation of 0 ~ S; ~ 1. (i = 1 to m). Apart from this assumption, the proof given was com­
pletely general.



1330 D.Ho

Acknowledgement-The author is most grateful to Professor W. T. Koiter for his helpful discussions on
various aspects of the paper and in particular for pointing out to her the distinction between the physical
and the normalized co-ordinates.

REFERENCES
1. W. T. Koiter, On the Stability of Elastic Equilibrium, Thesis, Delft, NASA IT P-IO, 833 (English Trans­

lation).
2. W. T. Koiter, Elastic Stability and Post-buckling Behaviour, Proc. Symp. Non-linear Problems, edited by

R. E. Langer. University of Wisconsin Press (1963).
3. J. Roorda, The Buckling Behaviour of Imperfect Structural Systems, J. Mech. Phys. Solids 13 (1965).
4. M. J. Sewell, On the Branching of Equilibrium Paths, Proc. Roy. Soc. Lond. A. 315,499-518 (1970).
5. A. H. Chilver and K. C. Johns, Co-incident Branching Points as Generators of Buckling Paths CANCAM

Conf. (1969).
6. D. Ho. The Influence of Imperfections on Systems with Coincident Buckling Loads, Int. J. Non-linear

Mechanics 7 (1972).
7. J. M. T. Thompson, A general theory for the equilibrium and stability of discrete conservative systems,

J. appl. Math. Phys. (ZAMP) 20, 797 (1969).


